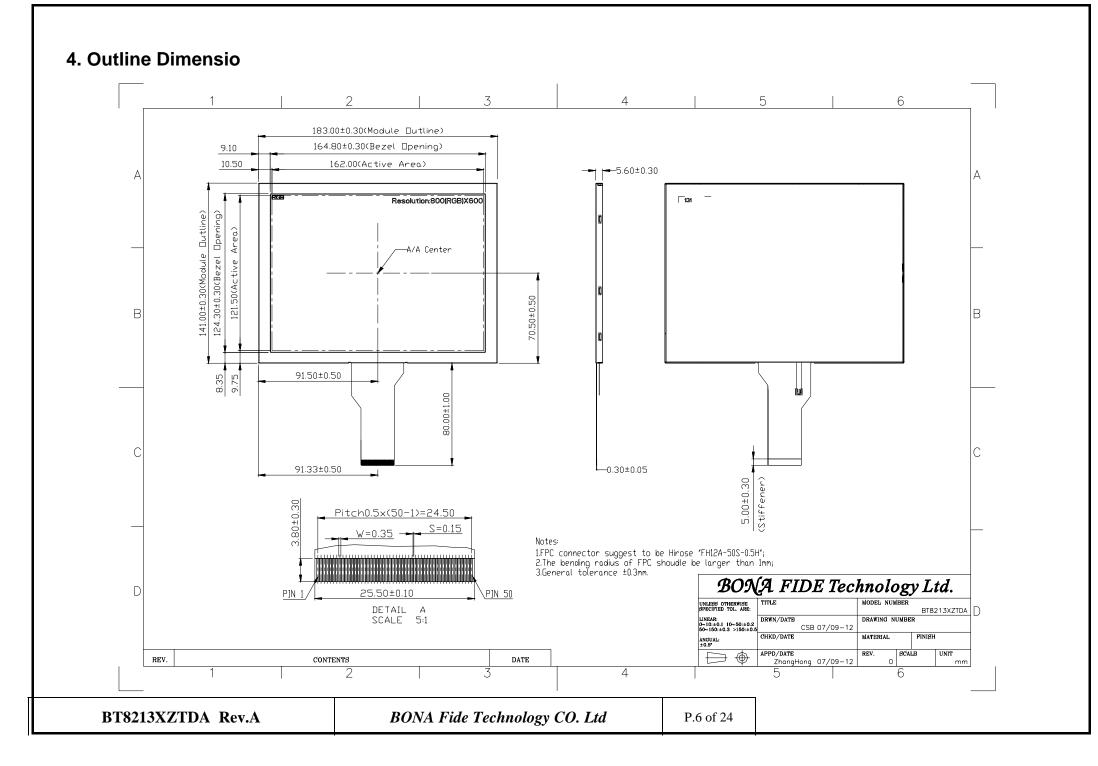


Table of Contents

1.Revision History	3
2.Module Classification Information	4
3.Physical Data	5
4.Outline Dimensio	6
5.Pin Assignment	7
6. Operation Specifications	10
7. Optical Specifications	17
8. Reliability Test Items	21
9. Using LCD Modules	22

1. Revision History

Version	Summary	Date dd-mm-yy
А	Original	2012-09-07


2. MODULE CLASSIFICATION INFORMATION

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(a) BT: Company Name Abbreviation
(b) Product Type T—TFT (NUL) C—CSTN S—STN O—OTHER
(c) Product Serial Number
(d) Number of Columns A-16 B-32 C-64 D-67 E-80 F-96 G-100 H-102 I-112 J-120 K-128 L-130 M-132 N-160 O-176 P-220 Q-234 R-240 S-320 T-480 U-640 V-960 W-272 X-800 Y-1024
 (e) Number of Rows A-16 B-32 C-64 D-67 E-80 F-96 G-100 H-102 I-112 J-120 K-128 L-130 M-132 N-160 O-176 P-220 Q-234 R-240 S-320 T-480 U-640 V-960 W-272 X-800 Z-600
(f) Display ModeT:Transmissive R:Reflective F:Transflective C:Oled ColorM:Oled Mono
(g) Optimal View Direction D6 O'CLOCK U—12 O'CLOCK L—9 O'CLOCK R—3 O'CLOCK O—Other
(h) Product Version: From A to Z

3. PHYSICAL DATA

No.	ltem	Specification	Remark
1	LCD size	8.0 inch(Diagonal)	
2	Driver element	a-Si TFT active matrix	
3	Resolution	800 imes 3(RGB) imes 600	
4	Display mode	Normally White, Transmissive	
5	Dot pitch	0.0675(W) imes 0.2025(H) mm	
6	Active area	162.0(W) $ imes$ 121.5(H) mm	
7	Module size	183.0(W) \times 141.0(H) \times 5.6(D) mm	Note 1
8	Surface treatment	Anti-Glare	
9	Color arrangement	RGB-stripe	
10	Interface	Digital	
11	Backlight power consumption	1.782W (Typ.)	
12	Panel power consumption	0.356W(Typ.)	
13	Weight	TBD	

Note 1: Refer to Mechanical Drawing.

5.Pin Assignment

1 TFT LCD Panel Driving Section.

 FPC Connector is used for the module electronics interface. The recommended model is FH12A-50S-0.5SH manufactured by Hirose.

Pin No.	Symbol	I/O	Function	Remark
1	LED +	P	LED Anode	
2	LED +	P	LED Anode	
3	LED -	P	LED Cathode	
4	LED -	Р	LED Cathode	
5	GND	Р	Power ground	
6	V _{COM}		Common voltage	
7	Vcc	Р	Power for Digital circuit	
8	MODE		DE/SYNC mode select	Note3
9	DE		Data Input Enable	
10	VS	-	Vertical Sync Input	
11	HS	I	Horizontal Sync Input	
12	B7		Blue data(MSB)	
13	B6		Blue data	
14	B5		Blue data	
15	B4		Blue data	
16	B3	-	Blue data	
17	B2	-	Blue data	
18	B1	-	Blue data	
19	B0	Ι	Blue data(LSB)	
20	G7	Ι	Green data (MSB)	
21	G6	-	Green data	
22	G5		Green data	
23	G4	-	Green data	
24	G3	-	Green data	
25	G2	-	Green data	
26	G1	Ι	Green data	
27	G0	Ι	Green data (LSB)	
28	R7	Ι	Red data (MSB)	
29	R6	Ι	Red data	
30	R5	Ι	Red data	
31	R4	Ι	Red data	

32	R3	-	Red data	
33	R2	-	Red data	
34	R1		Red data	
35	R0	I	Red data (LSB)	
36	GND	Р	Power ground	
37	DCLK		Sample clock	
38	GND	Р	Power ground	
39	L/R	I	Right/ left selection	Note2,5
40	U/D	I	Up/down selection	Note2,5
41	V _{GH}	Р	Gate ON voltage	
42	V _{GL}	Р	Gate OFF voltage	
43	AV _{DD}	Р	Power for Analog circuit	
44	RESET	I	Global reset pin.	Note1
45	NC	-	No connection	
46	V _{COM}	Ι	Common voltage	
47	DITHB	-	Dithering function	Note 4
48	GND	Р	Power ground	
49	NC	-	No connection	
50	NC	-	No connection	

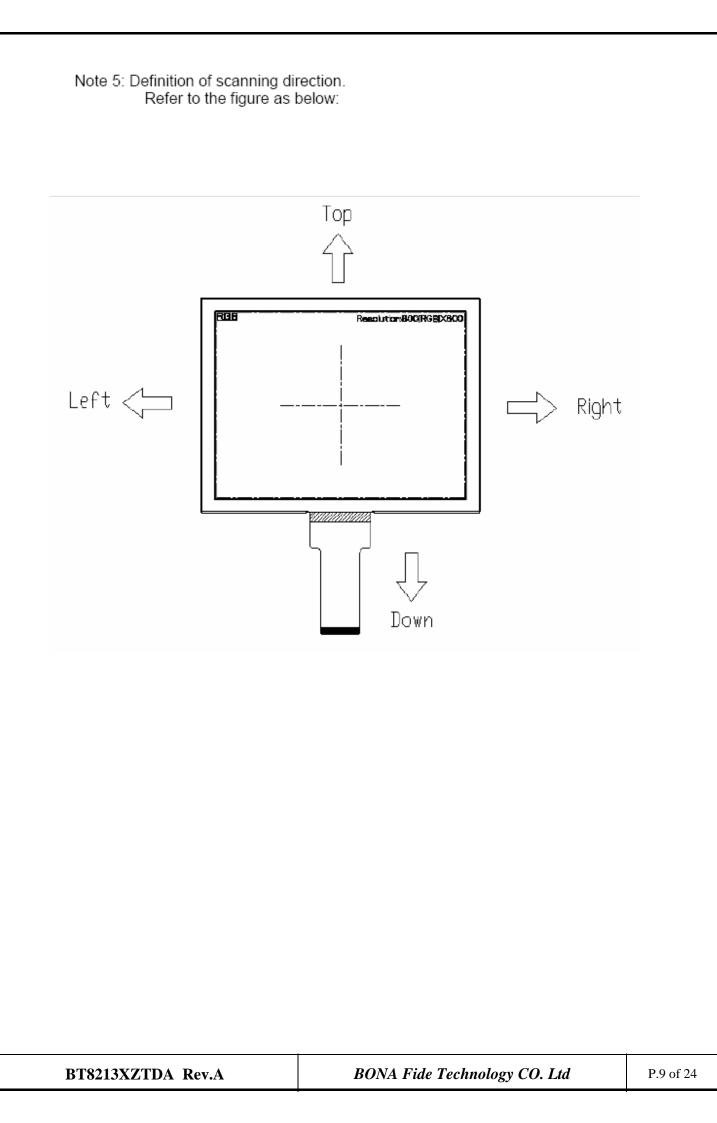
I: input, O: output, P: Power

Note 1: Global reset pin. Active Low to enter Reset State. Suggest to connecting with an RC reset circuit for stability. Normally pull high.

Note 2: Selection of scanning mode	
------------------------------------	--

Setting of scan control input		Scanning direction				
U/D	R/L					
GND	V _{cc}	Up to down, left to right				
V _{cc}	GND	Down to up, right to left				
GND	GND	Up to down, right to left				
V _{cc}	V _{cc}	Down to up, left to right				

Note 3: DE/SYNC mode select, Normally pull high.


H: DE mode.

L: HS/VS mode.

Note4: Dithering function enable control. Normally pull high.

DITHB="1",Disable internal dithering function. For 18bit RGB interface, connect two LSB bits of all the R/G/B data buses to GND.

DITHB="0",Enable internal dithering function, For TTL 24bit parallel RGB image data input.

6. Operation Specifications

6.1 Absolute Maximum Rating

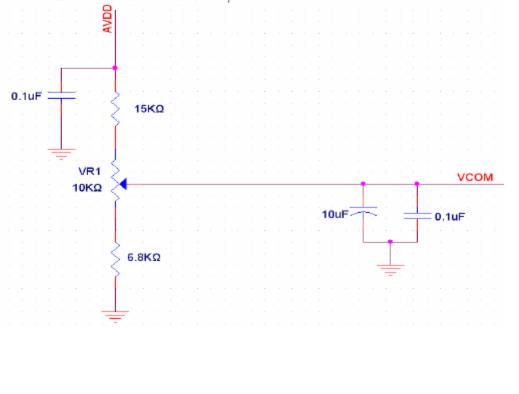
(GND=AV _{SS} =0V, Note 1)							
ltem	Symbol	Val	Unit	Remark			
item	Symbol	Min.	Min. Max.		Remark		
	V _{cc}	-0.3	5.0	V			
	AV _{DD}	-0.5	13.5	V			
Power voltage	V_{GH}	13.0	19.0	V			
	V_{GL}	-12.0	-2.0	V			
	V_{GH} - V_{GL}	-	31.0	V			
Operation Temperature	T _{OP}	-20	70	°C			
Storage Temperature	T _{ST}	-30	80	°C			
LED Reverse Voltage	Vr	-	1.2	V	each LED Note 2		
LED Forward Current	lF	-	25	mA	each LED		

Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

Note 2: VR Conditions: Zener Diode 20mA

6.1.1 Typical Operation Conditions

(GND=AV_{SS}=0V, Note 1)


(0112-7755-07, 11010-1)						
ltem	Symbol		Values	Unit	Remark	
item	Symbol	Min.	Тур.	Max.	Unit	Kemark
	Vcc	3.0	3.3	3.6	V	Note 2
Power voltage	AV _{DD}	10.2	10.4	10.6	V	
	V_{GH}	15.3	16.0	16.7	V	
	V_{GL}	-7.7	-7.0	-6.3	V	
Input signal voltage	V _{COM}	2.8	(3.8)	4.8	V	Note 4
Input logic high voltage	VIH	0.7V _{cc}	-	V _{cc}	V	Note 3
Input logic low voltage	VIL	0	-	0.3V _{cc}	V	NOLE 5

Note 1: Be sure to apply V_{CC} and V_{GL} to the LCD first, and then apply V_{GH}.

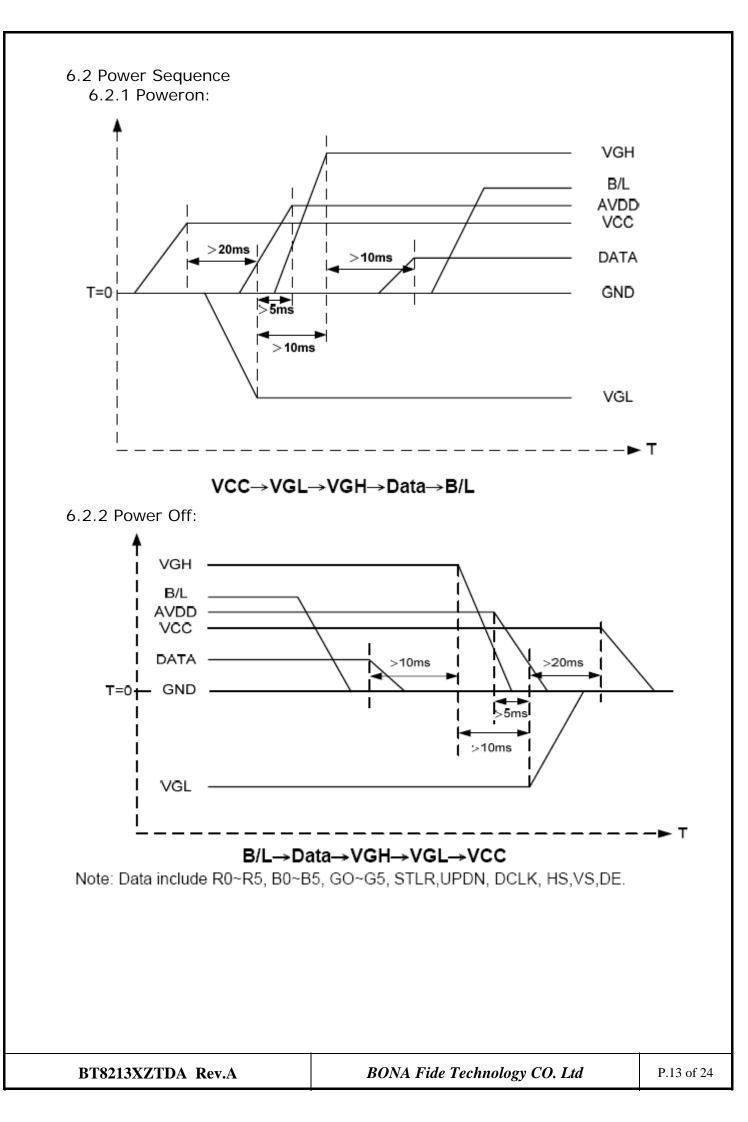
Note 2: V_{cc} setting should match the signals output voltage (refer to Note 3) of customer's system board .

Note 3: DCLK,HS,VS,RSTB,UPDN,STLR,MODE,DITHB.

Note 4: Typical VCOM is only a reference value, it must be optimized according to each LCM. Be sure to use VR;

6.1.2 Current Consumption

ltem	Symbol		Values		Unit	Remark	
nem	Symbol	Min.	Тур.	Max.	Unit	Kennark	
	I _{GH}	-	0.2	0.5	mΑ	V _{GH} =16.0V	
	I _{GL}	-	0.2	1.0	mΑ	V _{GL} = -7.0V	
Current for Driver	Icc	-	5.5	10.0	mA	V _{CC} =3.3V	
	IAV _{DD}	-	32.0	50.0	mA	AV _{DD} =10.4V	


(GND=AV_{SS}=0V)

6.1.3 Backlight Driving Conditons

ltem	Symbol	Values			Unit	Remark
nem	Symbol	Min.	Тур.	Max.	Onic	Remark
Voltage for LED backlight	VL	9.3	9.9	10.5	V	Note 1
Current for LED backlight	١L	162	180	198	mA	
LED life time	-	20,000	-	-	Hr	Note 2

Note 1: The LED Supply Voltage is defined by the number of LED at Ta=25°C and $\rm I_L$ =180mA.

Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and I_L =180mA. The LED lifetime could be decreased if operating I_L is lager than 180 mA.

6.3 Timing Characteristics6.3.1 AC Electrical Characteristics

ltem	Symbol		Values	Unit	Remark	
nem		Min.	Тур.	Max.	Unit	Remark
HS setup time	Thst	8	-	-	Ns	
HS hold time	Thhd	8	-	-	Ns	
VS setup time	Tvst	8	-	-	Ns	
VS hold time	Tvhd	8	-	-	Ns	
Data setup time	Tdsu	8	-	-	Ns	
Data hole time	Tdhd	8	-	-	Ns	
DE setup time	Tesu	8	-	-	Ns	
DE hole time	Tehd	8	-	-	Ns	
VDD Power On Slew rate	Tpor	-	-	20	ms	
RSTB pulse width	TRst	10	-	-	us	
CLKIN cycle time	Tcoh	20	-	-	Ns	
CLKIN pulse duty	Tcwh	40	50	60	%	
Output stable time	Tsst	-	-	6	us	

6.3.2 Timing

ltem	Symbol		Values	Unit	Remark	
nem		Min.	Тур.	Max.	omit	Kennark
Horizontal Display Area	thd	-	800	-	DCLK	
DCLK Frequency	fclk	-	40	50	MHz	
One Horizontal Line	th	862	1056	1200	DCLK	
HS pulse width	thpw	1	-	40	DCLK	
HS Back Porch(Blanking)	thb	46	46	46	DCLK	
HS Front Porch	thfp	16	210	354	DCLK	

ltem	Symbol		Values	Unit	Remark	
nem		Min.	Тур.	Max.	onne	Kennark
Vertical Display Area	tvd	-	600	-	ΤH	
VS period time	tv	624	635	700	TH	
VS pulse width	tvpw	1	-	20	TH	
VS Back Porch(Blanking)	tvb	23	23	23	TH	
VS Front Porch	tvfp	1	12	77	ΤH	

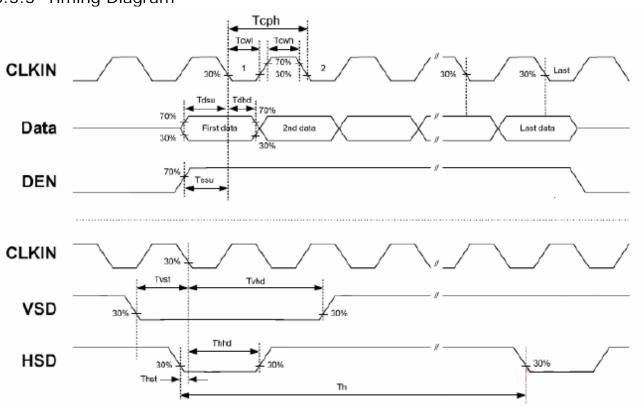


Figure 3.1 Input Clock and Data Timing Diagram

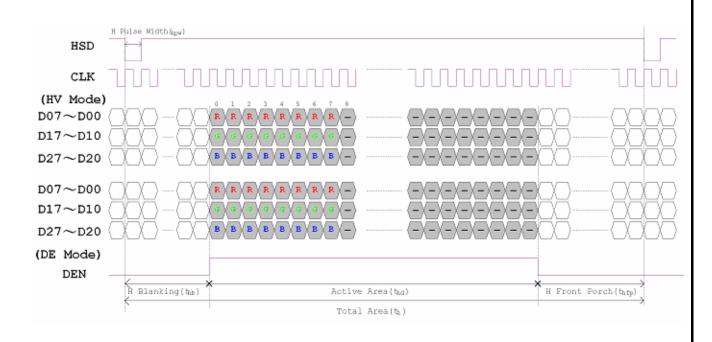
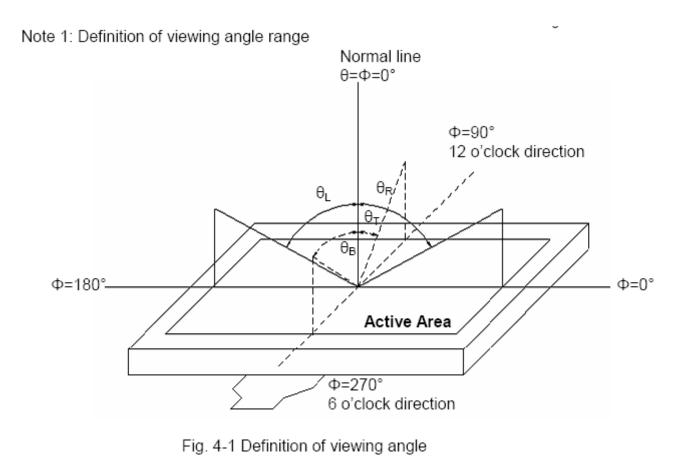
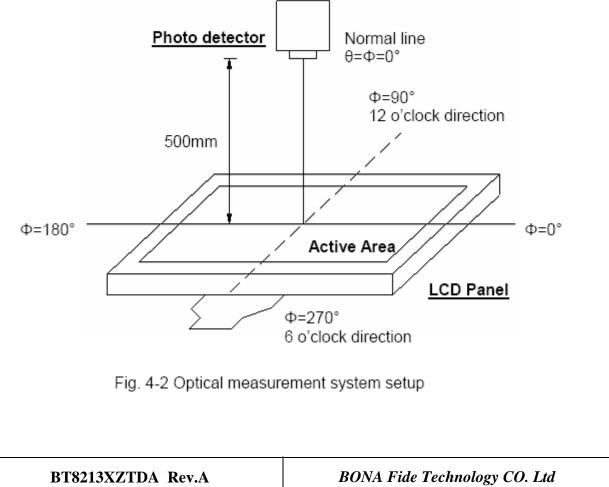


Figure 3.2 Horizontal input timing diagram.


7. Optical Specifications

ltem	Symbol Condition			Values	Unit	Remark	
item	Symbol	Condition	Min.	Тур.	Max.	Onit	Relliark
	θ∟	Φ=180°(9 o'clock)	60	70	-		Note 4
Viewing angle	θ_{R}	Φ=0°(3 o'clock)	60	70	-	dograa	
(CR≥ 10)	θτ	Φ=90°(12 o'clock)	40	50	-	degree	Note 1
	θ_{B}	Φ=270°(6 o'clock)	60	70	-		
Response time	T _{on}		-	10	20	msec	Note 3
Response unie	T _{OFF}		-	15	30	msec	Note 3
Contrast ratio	CR	Normal θ=Φ=0°	400	500	-	-	Note 4
Color chromaticity W _X	W×		0.26	0.31	0.36	-	Note 2
		0.28	0.33	0.38	-	Note 5 Note 6	
Luminance	L		200	250	-	cd/m²	Note 6
Luminance uniformity	Υ _U		70	75	-	%	Note 7

Test Conditions:


1. V_{CC}=3.3V, I_L=180mA (Backlight current), the ambient temperature is 25° C.

2. The test systems refer to Note 2.

Note 2: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1° /Height: 500mm.)

P.18 of 24

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

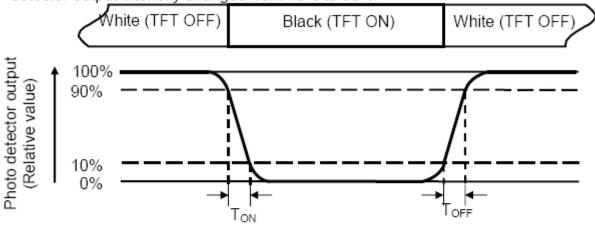


Fig. 4-3 Definition of response time

Note 4: Definition of contrast ratio

 $Contrast ratio (CR) = \frac{Luminance measured when LCD on the "White" state}{Luminance measured when LCD on the "Black" state}$

- Note 5: Definition of color chromaticity (CIE1931) Color coordinates measured at center point of LCD.
- Note 6: Definition of luminance:

Measured at the center area of the panel when LCD panel is driven at "white" state. The LED driving condition is I_L=180mA.

Note 7: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (Yu) =
$$\frac{B_{min}}{B_{max}}$$

L-----Active area length

W----- Active area width

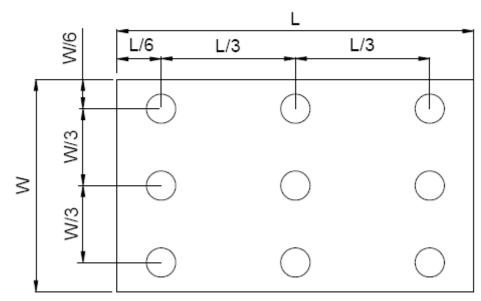


Fig. 4-4 Definition of measuring points

B_{max}: The measured maximum luminance of all measurement position.
 B_{min}: The measured minimum luminance of all measurement position.

8. Reliability Test Items

ltem	Test	Remark	
High Temperature Storage	Ta = 80°C	240hrs	Note 1, Note 4
Low Temperature Storage	Ta = -30°C	Note 1, Note 4	
High Temperature Operation	Ts = 70°C	240hrs	Note 2, Note 4
Low Temperature Operation	Ta = -20℃	240hrs	Note 1, Note 4
Operate at High Temperature and Humidity	+40°C, 90%RH	240hrs	Note 4
Thermal Shock	-30℃/30 min ~ +80 cycles, Start with co with high temperatu	Note 4	
Vibration Test	Frequency range:10 Stroke:1.5mm Sweep:10Hz~55Hz 2 hours for each dir (6 hours for total)		
Mechanical Shock	100G 6ms,±X, ±Y, ± direction	Z 3 times for each	
Package Vibration Test	Random Vibration : 0.015G*G/Hz from from 200-500HZ 2 hours for each dir (6 hours for total)	5-200HZ, -6dB/Octave ection of X. Y. Z.	
Package Drop Test	Height:60 cm 1 corner, 3 edges, 6		
Electro Static Discharge	± 2KV, Human Bo	dy Mode, 100pF/1500Ω	

Note 1: Ta is the ambient temperature of samples.

Note 2: Ts is the temperature of panel's surface.

Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.

Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

9. USING LCD MODULES

9-1. Liquid Crystal Display Modules

LCD is composed of glass and polarizer. Pay attention to the following items when handling.

- 1. Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.
- 2. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc).
- 3. N-hexane is recommended for cleaning the adhesive used to attach front/rear polarizers and reflectors made of organic substances which will be damaged by chemicals such as acetone, toluene, ethanol and isopropylalcohol.
- 4. When the display surface becomes dusty, wipe gently with absorbent cotton or other soft material like chamois soaked in petroleum benzin. Do not scrub hard to avoid damaging the display surface.
- 5. Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading.
- 6. Avoid contacting oil and fats.
- 7. Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizers. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
- 8. Do not put or attach anything on the display area to avoid leaving marks on.
- 9. Do not touch the display with bare hands .This will stain the display area and degradate insulation between terminals (some cosmetics are determinated to the polarizers).
- 10. As glass is fragile. It tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring.

9-2. Precaution for Handling LCD Modules

Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.

- 1. Do not alter, modify or change the shape of the tab on the metal frame.
- 2. Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
- 3. Do not damage or modify the pattern writing on the printed circuit board.
- 4. Absolutely do no modify the zebra rubber strip (conductive rubber) or heat seal connector.
- 5. Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
- 6. Do not drop, bend or twist LCM.

9-3. Electro-Static Discharge Control

Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC.

- 1. Make certain that you are grounded when handing LCM.
- 2. Before remove LCM from its packing case or incorporating it into a set , be sure the module and your body have the same electric potential.

- 3. When soldering the terminal of LCM, make certain the AC power source for the soldering iron does not leak.
- 4. When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.

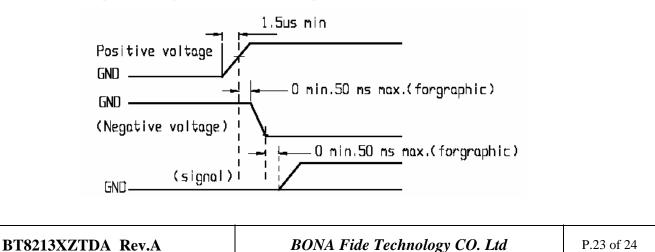
5. As far as possible make the electric potential of your work clothes and that of the work bench the ground potential.

6. To reduce the generation of static electricity be careful that the air in the work is not too dried. A relative humidity of $50\% \sim 60\%$ is recommended.

9-4. Precaution for soldering to the LCM

1. Observe the following when soldering lead wire, connector cable and etc. to the LCM.

- Soldering iron temperature:280°C±10°C
- Soldering time: 3-4 sec.
- Solder: eutectic solder.


If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non- halogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage dug to flux spatters.

- 2. When soldering the electroluminescent panel and PC board, the panel and board should not be detached more than three times. This maximum number is determined by the temperature of the soldering iron.
- 3. When remove the electroluminescent panel form the PC board, be sure the solder has completely melted, the soldered pad on the PC board could be damaged

9-5. Precaution for Operation

1. Viewing angle varies with the change of liquid crystal driving voltage (Vo). Adjust Vo to show the best contrast.

- 2. Driving the LCD in the voltage above the limit shortens its life.
- 3. Response time is greatly at temperature below the operating temperature range. However, this does not mean the LCM will be out of the order. It will recover when it returns to the specified temperature range.
- 4. If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then back on.
- 5. Condensation of terminals can cause an electrochemical reaction disrupting the terminal circuit. Therefore, it must be used under the relative condition of 40° C,50%RH.
- 6. When turning the power on, input each signal after the positive/negative voltage becomes stable.

9-6. Storage

When storing LCD as spares for some years, the following precaution are necessary.

1. Store them in a sealed polyethylene bag. If properly sealed, there is no need for dessicant.

2. Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0° C and 35° C.

- 3. The polarizer surface should not come in contact with any other objects. (We advise you to store them in the container in which they were shipped.)
- 4. Environmental conditions:
 - Do not leave them for more than 168hrs. at 60° C.
 - Should not be left for more than 48hrs. at -20 $^\circ\!\mathrm{C}$.

9-7. Safety

- 1. It is recommended to crush damaged or unnecessary LCD into pieces and wash off with solvents such as acetone and ethanol, which should later be burned.
- 2. If any liquid leak out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

9-8. Limited Warranty

Unless agreed between BONA and customer, BONA will replace or repair any of its LCD modules which are found to be functionally defective when inspected in accordance with BONA LCD acceptance standards(copies available upon request) for a period of one year from date of shipments. Cosmetic/ visual defects must be returned to BONA within 90 days of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of BONA limited to repair and/or replacement on the terms set forth above. BONA will not be responsible for any subsequent or consequential events.

9-9. Return LCM under warranty

No warranty can be granted if the precautions stated above have been disregarded. The typical examples of violations are:

- Broken LCD glass.
- PCB eyelet's damaged.
- PCB conductors damaged.
- -Circuit modified in any way, including addition of components.
- PCB tampered with by grinding, engraving or painting varnish.

-Soldering to or modifying the bezel in any manner.

Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects. Any connectors or cable installed by the customer must be removed completely without damaging the PCB eyelet's conductors and terminals.